
Pattern Recognition 36 (2003) 229–243
www.elsevier.com/locate/patcog

Host-based intrusion detection using dynamic and static
behavioral models

Dit-Yan Yeung∗, Yuxin Ding
Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 12 July 2001; received in revised form 5 December 2001; accepted 5 December 2001

Abstract

Intrusion detection has emerged as an important approach to network security. In this paper, we adopt an anomaly detection
approach by detecting possible intrusions based on program or user pro/les built from normal usage data. In particular, program
pro/les based on Unix system calls and user pro/les based on Unix shell commands are modeled using two di1erent types
of behavioral models for data mining. The dynamic modeling approach is based on hidden Markov models (HMM) and the
principle of maximum likelihood, while the static modeling approach is based on event occurrence frequency distributions
and the principle of minimum cross entropy. The novelty detection approach is adopted to estimate the model parameters
using normal training data only, as opposed to the classi/cation approach which has to use both normal and intrusion data
for training. To determine whether or not a certain behavior is similar enough to the normal model and hence should be
classi/ed as normal, we use a scheme that can be justi/ed from the perspective of hypothesis testing. Our experimental results
show that the dynamic modeling approach is better than the static modeling approach for the system call datasets, while the
dynamic modeling approach is worse for the shell command datasets. Moreover, the static modeling approach is similar in
performance to instance-based learning reported previously by others for the same shell command database but with much
higher computational and storage requirements than our method. ? 2002 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.

Keywords: Anomaly detection; Computer security; Data mining; Hidden Markov model; Intrusion detection; Maximum likelihood; Minimum
cross entropy; Pro/ling; Shell command; System call

1. Intrusion detection problems

Intrusion detection, which refers to a certain class of sys-
tem attack detection problems, is a relatively new area in
computer and information security.Many intrusion detection
systems built thus far are based on the general model pro-
posed by Denning in a seminal paper [1]. From a high-level
view, the goal is to /nd out whether or not a system is oper-
ating normally. Abnormality or anomaly in the system be-
havior may indicate the occurrence of system intrusions that

∗ Corresponding author. Tel: +852-2358-6977; fax: +852-
2358-1477.

E-mail address: dyyeung@cs.ust.hk (D.-Y. Yeung).

are the consequences of successful exploitation of system
vulnerabilities.

One aspect for the categorization of intrusion detection
systems is the target environment for detection, which is
related to where such systems are used. Host-based in-
trusion detection systems detect possible attacks into indi-
vidual computers on which the intrusion detection systems
run. Such systems typically make use of information spe-
ci/c to the operating systems of the target computers. On
the other hand, network-based intrusion detection systems
monitor network behavior by examining the content as well
as the format of network data packets, which typically are
not speci/c to the exact operating systems used by indi-
vidual computers as long as these computers can commu-
nicate among themselves using the same network protocol.

0031-3203/02/$22.00 ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S0031 -3203(02)00026 -2

230 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

For both types of intrusion detection systems, one may use
a data mining approach by “mining” through the host-based
or network-based data collected to detect possible attacks
from internal or external intruders.

Another aspect for categorization is the modeled be-
havior for detection, which is related to the methods
used for implementing such systems. Misuse detection
systems detect evidence of attacks based on knowledge
about abnormal behavior acquired from known attacks.
Anomaly detection systems, on the other hand, model
normal system behavior to provide a reference against
which deviations are detected and alerted as possible in-
trusions. In other words, the major di1erence between the
two approaches is on whether normal or abnormal (i.e.,
intrusive) behavior is modeled explicitly. Misuse detection
and anomaly detection systems are sometimes also re-
ferred to as knowledge-based and behavior-based systems,
respectively [2].

Since misuse detection systems typically require known
intrusive scenarios to be hand-coded a priori and such
scenarios are usually very speci/c to the operating sys-
tems if this approach is used for host-based systems, the
anomaly detection approach is often the preferred choice
for host-based intrusion detection systems because many
pattern recognition and machine learning methods, such as
density estimation methods [3], may be used for modeling
normal system behavior.

In this paper, data mining methods based on the anomaly
detection approach are proposed for host-based intrusion de-
tection. We consider both normal program pro/ling based
on system calls [4–8] and normal user pro/ling based on
shell commands [9–14]. In operating systems such as Unix,
the privileged processes that only the superuser is authorized
to execute make use of system calls to access privileged sys-
tem resources or services. Thus such privileged processes
are often a major target for intruders. To monitor user be-
havior on systems that accept shell commands from users,
shell command sequences from audit logs can be used for
user pro/ling.

The remainder of this paper is organized as follows. We
will /rst discuss in Section 2 two di1erent paradigms for
building behavioral models, followed by discussions on two
general categories of behavioral models in Section 3. We
will then present two speci/c methods, one based on the dy-
namic modeling approach (Section 4) and the other based on
the static modeling approach (Section 5). In Section 6, the
system call and shell command datasets [8,12] used in our
experiments will be described. Methods for preprocessing
the data for use by the dynamic and static models will also be
explained. In Section 7, we will present details of the model
construction and performance evaluation aspects. Justi/ca-
tion of the procedure from a hypothesis testing perspective
will be given. We will then present some experimental
results in Section 8. In Section 9, our contributions will be
summarized and some possible future research issues will be
outlined.

Table 1
Classi/cation vs. novelty detection in terms of data usage

Training set Validation set Test set

Classi6cation Paradigm
Class 1
(normal data)

√ √ √
Class 2
(abnormal data)

√ √ √

Novelty Detection Paradigm
Class 1
(normal data)

√ √ √
Class 2
(abnormal data)

√

2. Classi�cation versus novelty detection

Typical classi6cation problems studied in pattern recog-
nition can be formulated as building a classi/er that classi-
/es each pattern into one of c¿ 2 classes with as low clas-
si/cation error as possible. To build such a discriminative
classi/er, training examples from all c classes are needed.
If the classi/er is built using machine learning techniques,
this approach is often referred to as supervised learning.

While this formulation is commonly used in pattern recog-
nition, there also exists another formulation, called novelty
detection [15–17], which is much less explored than classi-
/cation. Simply put, novelty detection refers to the detection
of novel or abnormal events or patterns. In a probabilistic
sense, it is equivalent to deciding whether an unknown test
pattern is produced by the underlying data distribution that
corresponds to the training set of normal patterns. While
novelty detection problems appear to be similar to 2-class
classi/cation problems, with the two classes corresponding
to normal and abnormal patterns respectively, a major dif-
ference is that novelty detection methods typically use only
training examples from the class corresponding to normal
patterns to build a generative model of normal behavior.
Table 1 summarizes this major di1erence. The novelty de-
tection approach is particularly attractive under situations
where novel or abnormal patterns are expensive or diJcult
to obtain for model construction. If the model is built using
machine learning techniques, we refer to this as an unsuper-
vised learning approach. In this paper, the novelty detection
approach is adopted because it is superior to the classi/ca-
tion approach when intrusion data are scarce.

3. Dynamic versus static behavioral models

Normal program or user behaviors are pro/led by build-
ing behavioral models using data collected from normal op-
erations. There are generally two categories of behavioral
models. Dynamic models explicitly model temporal varia-
tions that are essential for discriminating abnormal system

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 231

behavior from normal behavior. Static models, on the other
hand, do not explicitly model temporal variations. They
could be used for anomaly detection problems if the normal
system behavior does not exhibit signi/cant temporal vari-
ations, or if the temporal sequences are /rst converted into
some non-temporal representation typically in the form of
multidimensional feature vectors with no time dimension.
In general, dynamic models are more powerful in represent-
ing subtle temporal regularities and hence should be used
if possible.

Di1erent anomaly detection methods have been applied.
They include instance-based learning [12,18], multi-layer
perceptrons [5,9], decision trees [10], hidden Markov mod-
els (HMM) [8,11], frequent episodes [13], correlation
analysis [4], statistical likelihood analysis [5], rule learning
[6–8], and uniqueness method [14]. Of these methods,
only HMMs are intrinsically dynamic in nature. Also, not
all of them are based on the preferred novelty detection
approach and hence they have to make use of both normal
and intrusion data for model construction.

In this paper, intrusion detection systems based on pro-
/ling system call sequences and shell command sequences
are /rst studied with the dynamic modeling approach us-
ing HMMs. These systems can be seen as extensions and
variants of previous HMM-based intrusion detection sys-
tems. Afterwards, we will propose an information-theoretic
static modeling approach based on the usage frequencies
of system calls or shell commands. Comparative studies of
the two modeling approaches on di1erent intrusion detec-
tion problems under di1erent operating conditions are then
performed.

4. Dynamic modeling approach based on hidden Markov
models and maximum likelihood

4.1. Hidden Markov models

HMMs are stochastic models of sequential data that have
been used successfully for many applications in knowledge
discovery, pattern recognition, and speech recognition. Each
HMM contains a /nite number of unobservable (or hidden)
states. State transitions are governed by a stochastic pro-
cess to form a Markov chain, i.e., a stochastic /nite state
machine. At each state, some state-dependent events can
be observed. The emission probabilities of these observable
events are determined by a probability distribution, one for
each state. Of interest here are discrete HMMs in which the
observed events (system calls or shell commands) are dis-
crete symbols, as opposed to other models not studied here,
called continuous-density HMMs.

Based on the connectivity topology between states, two
types of HMMs can be distinguished [19]. Fully-connected
or ergodic HMMs allow state transitions between all
state pairs. On the other hand, left-to-right HMMs do not
allow state transition back to any state to the left of the

Fig. 1. Left-to-right HMM with two state transition types.

current state. In fact, most left-to-right HMMs used in prac-
tice only allow state transition from a state to itself (called
self-transition), to the immediate neighbor to the right, and
to the neighbor two steps to the right. In this paper, our
left-to-right HMMs are further restricted to only the /rst
two types of state transition, as shown in Fig. 1 above.

To estimate the parameters of an HMM for modeling
normal system behavior, sequences of normal events (sys-
tem calls or shell commands in our case) collected from
normal system usage are used as training examples. An
expectation-maximization (EM) algorithm [20] known as
the Baum-Welch re-estimation algorithm [21] for mixture
density estimation is used to /nd the maximum-likelihood
(ML) parameter estimate. More details of the algorithm can
be found in Ref. [19].

4.2. Sample likelihood with respect to model

Given a trained HMM M , the sample likelihood of an
observation sequence S with respect to M can be computed
using either the forward algorithm or the backward algo-
rithm [19]. From a generative point of view, this can be
seen as computing the probability that a given observation
sequence is generated by the model. Alternatively, we can
also consider it as providing a quantitative measure for as-
sessing how well the model matches the sequence.

Ideally, a well-trained HMM can give suJciently high
likelihood values only for sequences that correspond to nor-
mal behavior. Sequences that correspond to intrusive be-
havior should give signi/cantly lower likelihood values.
By comparing the sample likelihood of S with respect to M
against a certain threshold, one can decide whether S devi-
ates signi/cantly from M and hence should be considered
a possible intrusion. We will describe how to determine the
threshold in Section 7.3.

5. Static modeling approach based on occurrence
frequency distributions and minimum cross entropy

5.1. Occurrence frequency distributions

Suppose the occurrence frequencies of di1erent events
(system calls or shell commands) are measured during a cer-
tain period of time. A probability distribution (i.e., a prob-
ability mass function de/ned over the space of all possi-
ble events under consideration) can be used to represent the
overall occurrence pattern during that period. Since the order

232 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

in which di1erent events occur is not taken into account in
the distribution, we refer to this as a static modeling method.
Using this representation scheme, a normal program or user
behavioral model is simply represented as occurrence fre-
quency distribution, which is the basis on which possible
system intrusions can be detected.

Let P(M) denote the probability distribution char-
acterizing the behavior of a normal model M and let
Pi(M); i = 1; 2; : : : ; N denote the occurrence probability
of event i among a total of N possible events. Similarly,
Q(S) and Qi(S); i = 1; 2; : : : ; N denote the probability dis-
tribution and individual event probabilities, respectively,
for some behavior S being monitored. In what follows, the
dependencies on M and S are not explicitly shown for the
sake of notational simplicity.

5.2. Cross entropy between distributions

To characterize how di1erent two distributions P and
Q are, we need a measure for quantifying the dissimilar-
ity between them. An information-theoretic measure that
can serve this purpose is known as cross entropy [22,23],
which is also related to Kullback–Leibler information
measure [24].

For our purpose, we use the following de/nition of cross
entropy:

C(P; Q) =
N∑

i=1

(Qi − Pi) log
Qi

Pi
:

Note that changing the roles of P and Q does not a1ect this
measure, i.e., the measure is symmetric with respect to the
two distributions involved:

C(P; Q) = C(Q; P):

Moreover, it can be shown that the following two properties
always hold:

C(P; Q)¿ 0;

C(P; Q) = 0 ⇔ P = Q:

Thus, by checking whether the cross entropy between
P and Q is larger than a certain threshold, one can decide
whether S should be considered a possible intrusion with
respect to the model M . We will describe how to determine
the threshold later in Section 7.3.

6. Data preprocessing and partitioning

6.1. Preprocessing of system call data

The system call datasets are available at the public-domain
archive in the Department of Computer Science of the Uni-
versity of New Mexico. 1 In this paper, we report results

1 The URL is http://www.cs.unm.edu/∼immsec/data/.

Table 2
An example with system calls forming two traces

Process ID System call

1 13
1 15
2 16
1 13
2 14
1 16

for four Unix programs: ps, login, named, and sendmail.
In general, executing a single program may lead to multiple
processes. For system calls that are issued by the same pro-
cess, we group them together to form a trace. For example,
Table 2 shows several system calls together with the corre-
sponding process IDs. The system calls can be grouped into
two traces: 13 15 13 16 : : : and 16 14 : : :. In general, di1er-
ent traces are of di1erent lengths.

The intrusion data were generated by running programs
intruded according to public advisories posted on the In-
ternet. Both ps and login used Trojan intrusions, which
allow unauthorized access to the system through a built-in
“back-door”. For the named data, the intrusion used was
bu1er overOow [8]. For sendmail, the intrusions were
sunsendmailcp and a decode alias attack [4].

Note that the ground truth of intrusion data is more dif-
/cult to vet than one might expect. Although an intruded
program contains anomalous code, a particular execution of
the program may not involve the anomalous code at all and
hence it can still generate a trace of system calls that is en-
tirely normal. In fact, as will be discussed later in Section
8.1.1, we have found evidence in the datasets (with the ex-
ception of ps) that could possibly be attributed to this. Ide-
ally one would like to have intrusion datasets that contain
truly intrusive data only. However, this would require the
implementation of some /ltering mechanism for the data
generated from an intruded program, which in general is not
easy to materialize.

6.2. Preprocessing of shell command data

The shell command datasets are available at the
public-domain KDD archive maintained by the Department
of Information and Computer Science of the University of
California at Irvine. 2 They were contributed by some re-
searchers from Purdue University [12]. Since it is diJcult
to obtain real intrusion data, only normal data were col-
lected via the history /le mechanism from eight di1erent
Unix users over a period of more than two years. For each
user login session (i.e., from login to logout), each word
typed by the user was recorded as a token. Since many

2 The URL is http://kdd.ics.uci.edu/databases/UNIX user data/
UNIX user data.html.

http://www.cs.unm.edu/~immsec/data/
http://kdd.ics.uci.edu/databases/UNIX_user_data/
mailto:UNIX_user_data.html

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 233

Table 3
Data partitioning for system call datasets

Program

ps login named sendmail

No. of system call categories 22 46 46 53

Training set No. of traces 24 12 8 135
(normal)

No. of system calls 6144 8894 677340 154159

Threshold No. of traces (training set) 91
determination
set (normal) No. of system calls (training set) 832364

Test set (normal) No. of traces (training set) 12 120

No. of system calls (training set) 7690572 813241

Test set (intrusive) No. of traces 26 9 5 13

No. of system calls 6968 4853 1800 3688

Unix commands are followed by parameters (e.g., ls -laF
Paper Notes letterhead.tex), the set of all distinct to-
kens would become too large to be manageable. To reduce
the size of the token set, only a count of the /les or direc-
tories is represented as a token instead of the actual /le or
directory names (e.g., ls -laF¡ 3¿). Similar to the case
of system calls, all the tokens in a login session also form a
trace.

Note that the datasets contain no real intrusion data be-
cause it is diJcult to collect such data in real applications.
This holds in general for this kind of intrusion detection
problems. In our experiments, (normal) data from other
users were used as if they were “intrusive” data for a given
user. Thus, by its very nature, this problem is more like a
classi/cation problem than a novelty detection problem, al-
though we still use a novelty detection approach as it is more
desirable in practice.

6.3. Partitioning of datasets

In general, each set of data is partitioned into three subsets
that are used for di1erent purposes:

1. Training set (normal data only)
2. Threshold determination set (normal data only)
3. Test set (both normal and intrusion data)

The training set of data is for estimating the parameters
of a behavioral model. Only normal data are needed when
the novelty detection approach is used. As the model is
built using normal data only, we need a criterion to de-
cide when a new behavior observed should be considered
normal or intrusive. In particular, it corresponds to /nd-

ing a threshold for some similarity (e.g., likelihood) or
dissimilarity (e.g., cross entropy) measure. The threshold
determination set (cf., validation set for cross validation
in statistics) of normal data is used for determining this
threshold. 3

After the model parameters and the threshold have been
estimated using the training and threshold determination
sets, respectively, the test set can be used for evaluating the
performance of the model. More details about the perfor-
mance measures used will be discussed in Section 7.1.

Table 3 shows the dataset sizes of the system call data used
in our experiments. Since the available data for programs
ps and login are quite limited and the similarity between
normal traces is usually quite high for system call data as
con/rmed by our preliminary investigations, we used all the
normal data for training with no separate threshold determi-
nation set and test set. We tried to use a separate threshold
determination set for named but we found that the result
was better by using the training set to determine the thresh-
old. However, separate test sets were available for programs
named and sendmail.
Table 4 summarizes the dataset sizes of the shell com-

mand data used in our experiments. As discussed above, for
each user, the (normal) data of all other users were treated
as if they were “intrusive” data for that user. Whereas the
test data of a user can be used for measuring the false de-
tection rate (FDR), the test data of all other users can be
used for measuring the true detection rate (TDR). (These

3 Determining the threshold using a set of data di1erent from
the training and test sets is just a special case of model selection.
In general, the threshold determination set is called validation set
or parameter selection set.

234 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

Table 4
Data partitioning for shell command datasets

User Training set Threshold determination set Test set

No. of No. of No. of No. of No. of No. of
traces tokens traces tokens traces tokens

0 171 5733 170 6802 147 6316
1 196 5702 194 5327 365 5571
2 134 6776 134 3844 216 5120
3 313 13626 312 10309 286 11970
4 213 10826 212 11850 121 10981
5 832 20285 831 18009 762 19020
6 419 4485 418 5062 502 4738
7 562 16784 562 16586 466 16706

Table 5
Number of distinct tokens for each user

User No. of distinct tokens Total no. of
in training set distinct tokens

0 151 286
1 152 308
2 174 484
3 291 476
4 375 561
5 360 607
6 228 447
7 406 704

two performance measures will be explained in detail in
Section 7.1.) Since the available datasets are quite large,
we used disjoint sets of data for training, threshold de-
termination, and testing. Partitioning of the datasets is as
follows. For each user, the shell command traces recorded
in chronological order are partitioned into two groups such
that the tokens in the /rst group are roughly twice as many
as those in the second group. The second group forms the
test set. To minimize the di1erences between the training
and threshold determination sets, the traces in the /rst
group are assigned to two sets in an interleaved manner,
i.e., the odd-numbered traces are assigned to one set and
the even-numbered traces are assigned to another set. Thus
the two sets have roughly the same number of traces. Table
5 shows the number of distinct tokens found in the data for
each user. When the datasets for all eight users are com-
bined together, the total number of distinct tokens is equal
to 2356.

7. Model construction and performance evaluation

7.1. Performance criteria

For performance evaluation, we de/ne two measures,
namely, true detection rate (TDR) and false detection

rate (FDR):

TDR = Pr(intrusive | intrusive)

=
number of intrusive testing traces detected as intrusive

number of intrusive traces in test set

FDR = Pr(intrusive | normal)

=
number of normal testing traces detected as intrusive

number of normal traces in test set

In other words, TDR is the probability that an intrusive
trace is correctly detected, and FDR is the probability that a
normal trace is incorrectly reported as intrusive. We prefer
these two measures because both relate reporting the occur-
rence of an intrusive event to the ground truth (i.e., normal
or intrusive nature) of that event. This is in line with the
convention used in Ref. [8] although they refer to the two
measures as true positives and false positives, respectively.
We use the term “detection” to make the meaning of detect-
ing intrusions more explicit. Hit rate and false alarm rate
can also be used in place of TDR and FDR, respectively.
Note that the commonly used term, called false acceptance
rate or false negatives, for expressing Pr(normal | intrusive)
can be computed simply by subtracting TDR from 1.

7.2. Model training

To train an HMM, /xed-length sequences of events are
extracted from each trace of the training set bymoving a win-
dow of the speci/ed width (i.e., sequence length) through
the entire trace with a step size of 1. Identical sequences
extracted are represented by only a single copy in the train-
ing set. Both fully-connected and left-to-right HMMs were
used in our experiments. In what follows, we will refer to
these two types of HMMs as FC-HMM and LR-HMM, re-
spectively.

For the static modeling approach, all traces from the train-
ing set are used to create a distribution-based behavioral
model.

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 235

L events

K events

K + 1 events

L events

Trace

Sequence 1

Sequence 2

Sequence L _ K + 1

Fig. 2. Extraction of variable-length sequences from a trace.

7.3. Threshold determination

After the parameters of a model have been estimated from
the training data, the threshold determination set is used to
determine an appropriate threshold which will subsequently
be used as a criterion for detecting possible intrusions.

For HMM-based dynamic modeling, /xed-length se-
quences are extracted from each trace of the threshold
determination set in the same way as before for the training
data. The sample likelihood of each sequence with respect
to the model can then be computed. For the static modeling
approach, each trace of the threshold determination set is
used to compute a distribution as well as the cross entropy
between this distribution and the reference distribution
computed based on the training data.

For each chosen FDR for the threshold determination set,
a corresponding threshold value can be obtained. Note that
in the case of HMMs, a trace is said to be intrusive if it
contains at least one intrusive sequence. In our experiments,
di1erent threshold values were tried by choosing di1erent
FDR values.

7.4. Model testing

To test whether a trace in the test set is intrusive,
/xed-length sequences extracted from the trace are pre-
sented to a trained HMM to compute the likelihood values.
If at least one sequence has a likelihood value that is lower
than the threshold, the trace is said to be intrusive. In other
words, we can conclude that a trace under investigation is
intrusive as soon as the /rst intrusive sequence is found
inside the trace, even though the end of the trace has not
been reached.

In the case of the static modeling approach, in order to
perform timely detection of possible intrusions, it would be
desirable if a decision could be made as soon as suJcient
data have been collected to compute a reasonably reliable
distribution. Since a trace may take a very long time to com-
plete (if a program that generates system calls runs for a
long time or if a user login session is long), we do not want
to wait until the end of the trace to make a decision. Instead,
a distribution is computed for each sub-trace sequence. The
cross entropy between this distribution and the reference dis-
tribution of the model computed based on the training data

will be compared with the threshold to determine whether it
is an intrusive sequence. The extraction of variable-length
sequences from a trace is illustrated in Fig. 2 above.

The detection of possible intrusions in a trace can be per-
formed immediately after the /rstK events (i.e., system calls
or shell command tokens) have arrived. We refer to K as the
minimum sequence length. If this value is small, it implies
that possible intrusions can be detected with small time de-
lay and hence is favorable. However, the value cannot be set
too small or else there is insuJcient information for making
reliable decisions. Thus the choice of an appropriate value
for K has to be a tradeo1 between these two considerations.

7.5. Hypothesis testing perspective

In this section, we will justify the scheme above from a
hypothesis testing perspective. Although our explanation is
based on HMMs, it also holds for the information-theoretic
static modeling method based on cross entropy.

Let M denote an HMM learned from the training data.
Given a sequence S from the test set, we want to decide
whether it is likely to be generated by M . In other words,
we want to determine whether S is a normal sequence. This
problem can be formulated as applying a statistical test [25].
Let us generate a suJciently large sample R of (normal)
sequences from M . For an arbitrary sequence R in R, the
log-likelihood of Rwith respect toM is denoted as LR, which
is equal to log Pr(R |M). Similarly, the log-likelihood of S
is denoted as LS , which is equal to log Pr(S |M). Based on
the empirical probability distribution of log Pr(R |M) over
the sample R, we then test the hypothesis that LS is drawn
from the probability distribution of the log-likelihood of the
sequences in R, i.e.

Pr(LR6 LS)¿

for some threshold 0¡ ¡ 1. We reject the null hypothesis
if the probability is not greater than , implying that S is
not a normal sequence with respect to model M .

In our case, the threshold determination set of normal data
plays the role of R although R is not actually generated by
M . If M is a well-trained model representing the training
set, the underlying distributions of the training and threshold
determination sets are close enough to each other, and the
threshold determination set is suJciently large, then it is not

236 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

unreasonable to use the threshold determination set as R.
Apparently, we can see that the threshold is just the FDR
chosen for the threshold determination set.

8. Experimental results and discussions

8.1. Experiments for system call data

8.1.1. Results
Experiments were conducted on the system call data us-

ing both the dynamic modeling approach (FC-HMM and
LR-HMM) and the static modeling approach. Tables 6 and
7 show some results for the programs ps, login, named,
and sendmail.
Di1erent choices of sequence length and number of states

were tried for HMMs. For each sequence length chosen, the
HMM with the smallest number of states that maximizes
the TDR is shown. For FC-HMM, the maximum number
of states tested is approximately equal to the total number
of di1erent system call categories in the corresponding pro-
gram (30 for ps, 48 for login, 50 for named, and 60 for
sendmail). We found that FC-HMM almost had no dis-
crimination power in detecting intrusions when the num-
ber of states was set too small (smaller than 6). Generally
speaking, the performance could be improved by increas-
ing the sequence length and the number of states, although
this was not always the case. For LR-HMM, the maximum
number of states tested is equal to the sequence length. The
performance was found to be very sensitive to the sequence
length. Increasing the sequence length always improved the
discrimination power of the model. Similarly, for the static
modeling method, di1erent values of minimum sequence
length were tried.

Recall that all normal data for ps and login were used
for training, leaving no separate data for threshold deter-
mination. For HMMs, the threshold was chosen to be the
minimum likelihood among all training sequences. For the
case of distribution-based static modeling, a cross entropy
value was computed between the entire training set and each
trace in the training set. The threshold was chosen to be
the maximum cross entropy among all traces in the training
set. Thus the FDR of the training set is always equal to 0.
Since no separate normal data were available for testing, the
FDR entries for these two programs are marked as ‘—’ in
Table 6.

For named, since the traces within a set are all very similar,
we found that a slight change of the threshold value could
lead to a great change in TDR. As a result, we determined
the threshold using the training set instead of a separate
threshold determination set of normal data.

For sendmail, we determined the threshold using a sep-
arate set of normal data (i.e., threshold determination set).
Four di1erent threshold values were chosen for each model
con/guration by making the FDR of the threshold determi-
nation set equal to 5%, 10%, 15%, and 20%. We found that

the FDR of the test set was always very close to that of the
threshold determination set. As discussed before, this prac-
tice of using a separate set of normal data to determine the
threshold can be justi/ed from a hypothesis testing perspec-
tive and should be used if at all possible. Hence sendmail
is a good example of the general case for the system
call data.

We found that the TDR for login and named could never
go beyond 77.8% and 60.0%, respectively. After examining
the training set (with normal traces only) and the intrusive
traces in the test set of each program, we discovered that
the intrusive traces that failed to be detected as intrusive are
in fact identical to some normal traces in the training set.
As mentioned in Section 6 above, a possible reason for this
is that sometimes the execution of an intruded program can
still generate a normal trace if the execution does not involve
any anomalous part of the program. Thus the above TDR
values are the best that one could obtain. For the sendmail
data, we also found one intrusive trace to be identical to one
normal training trace.

8.1.2. Discussion
From the experimental results shown above, we can see

that the information-theoretic static modeling method was
consistently inferior to HMM-based dynamic modeling for
the intrusion detection problem involving system calls. In
particular, the model constructed for the ps program was
unable to detect any intrusive trace. We speculate two pos-
sible reasons for this. First, di1erent traces from the same
dataset are usually quite similar in their distributions, mak-
ing it diJcult to distinguish normal traces from intrusive
ones simply by basing on the cross entropy values induced
by di1erent distributions. Second, as system calls are gener-
ated through the execution of a program which can be mod-
eled by a /nite state machine, the temporal dependencies
between system calls are salient features for intrusion de-
tection and hence should be captured using some dynamic
modeling techniques.

8.2. Experiments for shell command data

8.2.1. Results
Tables 8–10 show the results for the shell command data

using three di1erent methods.
For each method, only two choices of the sequence length

or minimum sequence length are included in the table to
illustrate the e1ect of varying the parameter, although more
choices were actually tried in our experiments. As before
for the sendmail example, the threshold was chosen in
such a way that the FDR of the threshold determination set
was equal to some prespeci/ed value (5%, 10%, 15% or
20%). For each chosen FDR value, the TDR shown is the
average taken over the individual TDR values by treating
the data from other users as intrusion data. The number
of states shown is the minimum value that maximizes
the TDR.

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 237

Table 6
Results for system call data (ps, login, named)

Program Model Sequence length No. of states Minimum TDR FDR
sequence length (%) (%)

ps FC-HMM 6 30 — 100 —
10 20 — 96.2 —
20 20 — 61.5 —
28 8 — 92.3 —

LR-HMM 20 12 — 65.4 —
28 16 — 100 —

Cross — — 30 0 —
entropy — — 50 0 —

login FC-HMM 6 48 — 77.8 —
10 48 — 77.8 —
20 38 — 66.7 —

LR-HMM 30 8 — 55.6 —
40 20 — 77.8 —
50 40 — 77.8 —

Cross — — 30 55.6 —
entropy — — 50 55.6 —

named FC-HMM 6 50 — 60.0 0
12 40 — 60.0 0
20 50 — 60.0 0

LR-HMM 20 8 — 60.0 0
30 12 — 60.0 0

Cross — — 30 60.0 0
entropy — — 50 60.0 0

Table 7
Results for system call data (sendmail)

Program Model Sequence No. of Minimum TDR (%)
length states sequence

length FDR FDR FDR FDR
=5% =10% =15% =20%

sendmail FC-HMM 6 10 — 61.5 84.6 84.6 92.3
12 40 — 0 84.6 84.6 84.6
20 20 — 0 91.7 91.7 91.7

LR-HMM 20 17 — 0 66.7 66.7 84.6
40 15 — 0 81.8 81.8 90.9

Cross entropy — — 20 66.7 66.7 66.7 66.7
— — 40 72.7 72.7 72.7 72.7

Increasing the sequence length always increased the dis-
crimination power of both FC-HMM and LR-HMM in de-
tecting intrusions. Since traces shorter than the sequence
length chosen were eliminated and there exist many short
shell command traces in the datasets corresponding to short
login sessions (unlike system call traces which are rather
long typically with more than 300 system calls per trace),
increasing the sequence length had the consequence of elim-
inating the shorter traces which could be partially responsi-
ble for the performance improvement because these traces
could not model the behavior well. This is also a possible
reason for the observed performance improvement of the

static modeling method as the minimum sequence length
increases.

8.2.2. Discussion
In our experiments, the information-theoretic static

modeling method performed signi/cantly better than both
FC-HMM and LR-HMM, typically 10–20% higher in the
TDR. A possible reason is that the temporal dependencies
between shell commands are much weaker and hence are
not particularly useful for intrusion detection. Instead, the
static shell command distribution seems to be suJcient for
many users.

238 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

Table 8
Results for shell command data (FC-HMM)

User TDR (%) of FC-HMM (sequence length =10) TDR (%) of FC-HMM (sequence length =30)

No. of FDR FDR FDR FDR No. of FDR FDR FDR FDR
states =5% =10% =15% =20% states =5% =10% =15% =20%

0 10 31.9 50.3 62.3 67.2 10 45.0 52.8 60.9 66.6
1 50 57.9 80.9 84.0 90.1 5 73.1 79.4 89.5 93.7
2 30 46.1 62.6 70.1 79.1 20 49.8 63.1 83.3 89.4
3 10 34.2 45.7 54.8 64.4 10 40.7 64.4 73.9 75.8
4 20 11.1 18.9 36.8 44.5 20 24.8 27.5 45.3 52.0
5 20 49.2 71.4 73.8 78.0 20 57.1 70.8 79.1 82.3
6 20 13.0 26.2 42.4 53.6 20 14.3 43.0 58.1 60.6
7 20 28.7 44.5 61.2 75.0 20 39.9 55.8 65.7 81.0

Average 34.0 50.1 60.7 69.0 43.1 57.1 69.5 75.2
Worst 11.1 18.9 36.8 44.5 14.3 27.5 45.3 52.0
Best 57.9 80.9 84.0 90.1 73.1 79.4 89.5 93.7

Table 9
Results for shell command data (LR-HMM)

User TDR (%) of LR-HMM TDR (%) of LR-HMM
(sequence length =30) (sequence length =50)

No. of FDR FDR FDR FDR No. of FDR FDR FDR FDR
states =5% =10% =15% =20% states =5% =10% =15% =20%

0 5 40.8 48.2 64.0 68.0 5 45.1 60.3 64.7 68.3
1 10 71.3 79.1 87.2 89.7 30 73.5 81.4 82.4 83.8
2 5 43.2 62.1 79.6 88.0 10 61.8 69.4 79.4 82.9
3 10 23.9 59.9 71.7 76.4 10 35.5 58.5 73.4 78.4
4 20 21.1 22.4 37.4 49.4 20 14.8 36.0 38.8 52.3
5 10 59.0 67.7 77.5 83.5 5 49.6 63.3 69.7 76.3
6 10 12.0 39.8 50.3 55.8 10 15.5 19.7 21.1 44.6
7 5 32.7 47.2 56.8 74.7 10 52.9 63.6 72.4 75.0

Average 38.0 53.3 65.6 73.2 43.6 56.5 62.7 70.2
Worst 12.0 22.4 37.4 49.4 14.8 19.7 21.1 44.6
Best 71.3 79.1 87.2 89.7 73.5 81.4 82.4 83.8

8.3. General discussion

From our experiments, we conclude that the HMM-based
dynamic modeling approach is better suited for the in-
trusion detection problem based on system calls, but the
information-theoretic static modeling approach is a better
choice for that based on shell commands.

Although FC-HMM usually gives slightly better perfor-
mance than LR-HMM, increasing the number of states in an
LR-HMM can approach the performance of an FC-HMM
with fewer states. For example, the FC-HMM with se-
quence length 30 in Table 8 is similar in performance to the
LR-HMM with sequence length 50 in Table 9. Note that the
time complexity of each training iteration of an FC-HMM
is O(W 2T), where W denotes the number of states and T
denotes the sequence length. As a comparison, the time

complexity of each training iteration of an LR-HMM is
only O(WT).

We also measured the CPU execution time for di1er-
ent methods. All the tasks were run on an UltraSPARC
30 workstation with 256MB memory. Tables 11–13 show
the CPU time required for the training and testing stages
measured for each user in the experiments as reported be-
fore (Tables 8–10). It can be seen that LR-HMM is faster
than FC-HMM for both the training and testing stages. Our
information-theoretic static modeling method based on cross
entropy is impressive in that its training time is always neg-
ligible because it simply requires the computation of a dis-
tribution based on the training data. The testing time is also
comparable to that for HMMs. Our method would be par-
ticularly attractive if new models have to be built regularly
due to frequent changes in the system behavior.

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 239

Table 10
Results for shell command data (cross entropy)

User TDR (%) of cross entropy TDR (%) of cross entropy
(min. sequence length =30) (min. sequence length =50)

FDR FDR FDR FDR FDR FDR FDR FDR
=5% =10% =15% =20% =5% =10% =15% =20%

0 52.9 62.7 79.3 82.2 46.2 78.5 80.5 81.1
1 56.0 81.2 93.2 95.4 54.4 71.4 89.8 92.7
2 43.3 49.4 73.4 95.9 43.3 49.4 73.4 96.0
3 46.8 76.5 90.7 95.1 46.8 76.5 88.5 95.1
4 48.4 76.1 85.7 88.0 55.0 73.9 81.0 82.2
5 56.7 74.3 78.7 82.8 50.3 70.2 81.2 89.4
6 25.6 44.0 57.2 58.8 36.1 40.1 56.0 60.0
7 60.8 85.7 93.9 97.1 83.4 95.4 97.6 99.5

Average 48.8 68.7 81.5 86.9 51.9 69.4 81.0 87.0
Worst 25.6 44.0 57.2 58.8 36.1 40.1 56.0 60.0
Best 60.8 85.7 93.9 97.1 83.4 95.4 97.6 99.5

Table 11
Execution time statistics for shell command data (FC-HMM)

User CPU time (sec.) of FC-HMM (sequence length =10) CPU time (sec.) of FC-HMM (sequence length =30)

No. of states Training Testing No. of states Training Testing

0 10 4282 4 10 8014 6
1 50 22547 54 5 3969 1
2 30 17510 19 20 13269 20
3 10 4367 3 10 7862 8
4 20 15574 9 20 32696 20
5 20 19304 8 20 32466 20
6 20 17806 8 20 32616 20
7 20 14909 9 20 28561 20

Average 14537 14.3 19932 14.4

Table 12
Execution time statistics for shell command data (LR-HMM)

User CPU time (sec.) of LR-HMM (sequence length =30) CPU time (sec.) of LR-HMM (sequence length =50)

No. of states Training Testing No. of states Training Testing

0 5 3522 4 5 7350 4
1 10 12194 4 30 30369 21
2 5 4122 5 10 14694 7
3 10 16095 4 10 12662 7
4 20 33532 12 20 21845 13
5 10 19264 6 5 10857 4
6 10 7783 7 10 11586 8
7 5 3634 4 10 15370 7

Average 12518 5.8 15591 8.9

240 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

Table 13
Execution time statistics for shell command data (cross entropy)

CPU time (sec.) of CPU time (sec.) of
cross entropy cross entropy
(min. sequence (min. sequence
length =30) length =50)

User Training Testing Training Testing

0 0 11 0 11
1 0 12 0 10
2 0 13 0 11
3 0 13 0 12
4 0 13 0 12
5 0 14 0 13
6 0 12 0 11
7 0 15 0 14

Average 0 12.9 0 11.8

8.4. Comparison with previous work

We also compared our results with those from previous
work. To facilitate comparison, we performed another ex-
periment using the same experimental setup as that used
by [12,18]. The datasets were partitioned into training, pa-
rameter selection (or threshold determination in our case),
and test sets as shown in Table 14 below. Moreover, in
their work, the TDR and FDR were computed based on se-
quences. We think it makes more sense to measure TDR
and FDR according to traces as in our experimental results
reported earlier. However, to facilitate comparison here, we
used the same scheme as theirs for this experiment.

Table 15 shows the classi/cation results obtained by [18]
using instance-based learning (IBL), giving an average
TDR of 34.2% with an average FDR of 5.3%. Table 16
shows the classi/cation results obtained by us using the
static modeling method based on cross entropy. The aver-
age TDR is 35.6% at an average FDR of 5.5%. Thus, it can
be concluded that the two methods can achieve very similar
performance in terms of the TDR and FDR measures.

It should be noted, however, that there are major di1er-
ences between the two methods in terms of computational
and storage requirements. Apparently IBL has much higher
storage requirement because all training examples have to
be explicitly stored. Also, each unknown test case has to
be matched against all the stored examples and hence the
computational overhead is also very high. Although data re-
duction techniques can alleviate the problems to a certain
extent, the high computational and storage requirements are
still the major limitations of IBL methods. Our method is
clearly superior in this aspect because the training examples
are summarized as a distribution, the storage requirement of
which does not depend on the size of the training set. Simi-
larly, during testing, the computational requirement is very
low as discussed above.

9. Conclusion

9.1. Concluding remarks

In this paper, we have presented two di1erent anomaly
detection approaches for two di1erent host-based intrusion
detection problems. For the intrusion detection problem in-
volving system call sequences, the use of dynamic behav-
ioral models is superior. A possible reason is that temporal
dependencies are salient features for this problem. This is in
line with other sequence learning problems with subtle tem-
poral relationships, which have found HMMs to be among
the best methods. On the other hand, the use of static behav-
ioral models can give better results for the intrusion detection
problem involving shell command sequences. It can be spec-
ulated that temporal dependencies are not very useful or may
even be harmful for this problem. Our information-theoretic
static modeling approach based on cross entropy is simple
and computationally cheap, yet it can outperform the more
sophisticated dynamic modeling approach based on HMMs.
A lesson to learn is that one should be careful in /nding the
best match between problems and methods. Apparently the
static modeling approach based on cross entropy is a better
match to the problem than the dynamic modeling approach
based on HMMs.

9.2. Contributions

The contributions of this paper are two-fold. First, al-
though HMMs and cross entropy are not new, using them
for solving novelty detection problems (as opposed to clas-
si/cation problems) is still an area that is far from being
suJciently explored. By formulating the detection problem
under a hypothesis testing framework, this paper presents
and demonstrates the use of theoretically justi/ed meth-
ods for solving novelty detection problems. It is our hope
that this e1ort could lead to more research along the same
line.

Second, intrusion detection is an important topic with
signi/cant practical implications. Our contribution to this
application area is that we have proposed some practically
feasible methods for solving two types of host-based in-
trusion detection problems with extensive experiments per-
formed on real-world data. This serves as an e1ort to broaden
the applications of pattern recognition techniques.

9.3. Future research

A closer look at Tables 15 and 16 above reveals the
fact that IBL is better for some users (0; 3; 4; 6) while the
cross-entropy method is better for other users (1; 2; 5; 7).
This shows that the two methods are complementary to
each other. A potential future research direction is to
combine these two methods and possibly also some other
methods to further improve the discrimination power. In

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 241

Table 14
Data partitioning for shell command datasets in comparative study

User Training set Parameter selection set Test set

No. of No. of No. of No. of No. of No. of
tokens traces tokens traces tokens traces

0 1557 49 1487 37 11992 356
1 1502 64 1714 63 11833 442
2 1995 76 1137 39 11877 330
3 1551 42 1474 40 12696 314
4 1500 45 1739 7 12255 311
5 1555 35 1507 55 11980 558
6 1500 90 1508 111 11277 1138
7 1590 52 1423 52 12250 456

Table 15
Classi/cation results for shell command data in comparative study (instance-based learning [18])

Tested user User model

0 1 2 3 4 5 6 7

0 99.3 57.0 31.7 61.0 75.1 0.6 38.5 10.1
1 14.9 92.9 12.4 64.2 16.3 0.9 4.0 6.0
2 41.3 58.7 94.7 43.6 71.1 0.3 47.9 8.3
3 64.8 91.7 46.7 90.0 86.4 0.6 69.0 15.1
4 34.4 21.2 18.6 72.1 92.7 1.3 8.6 3.0
5 50.4 68.3 39.7 70.3 78.0 99.9 57.2 29.4
6 41.8 15.4 17.7 82.3 48.7 0.6 91.7 4.7
7 24.7 11.0 8.7 40.7 22.1 0.6 5.8 96.2

FDR 0.7 7.1 5.3 10.0 7.3 0.1 8.3 3.8
Average TDR 38.9 46.2 25.1 62.0 56.8 0.7 33.0 10.9

Table 16
Classi/cation results for shell command data in comparative study (cross entropy)

Tested user User model

0 1 2 3 4 5 6 7

0 99.0 71.1 26.6 27.8 20.9 2.0 11.4 44.8
1 25.2 92.8 50.6 56.5 43.1 12.0 27.0 75.8
2 8.7 54.3 94.7 48.5 17.6 2.3 12.6 43.6
3 21.3 87.2 56.8 90.0 29.5 12.0 16.7 19.9
4 24.2 75.4 66.6 30.2 92.5 17.9 16.6 16.1
5 9.7 68.0 15.9 25.1 15.2 99.0 8.6 56.9
6 22.7 77.4 44.6 54.4 27.5 8.2 91.7 76.2
7 32.4 99.8 73.2 20.3 16.1 12.0 53.6 96.1

FDR 1.0 7.2 5.3 10.0 7.5 1.0 8.3 3.9
Average TDR 20.6 76.2 47.8 37.5 24.3 9.5 20.9 47.6

addition to host-based intrusion detection problems, we are
also conducting research on network-based intrusion detec-
tion. Some of the ideas learned from the current research
may also be relevant to network-based intrusion detection.

10. Summary

Intrusiondetection,whichrefers toacertainclassofsystem
attack detection problems in computer and information

242 D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243

security. From a high-level view, the goal is to /nd out
whether or not a system is operating normally. Abnormal-
ity or anomaly in the system behavior may indicate the
occurrence of system intrusions that are the consequences
of successful exploitation of system vulnerabilities.

In this paper, data mining methods based on the anomaly
detection approach are proposed for host-based intrusion de-
tection. We consider both normal program pro/ling based
on system calls and normal user pro/ling based on shell
commands. In operating systems such as Unix, the privi-
leged processes that only the superuser is authorized to ex-
ecute make use of system calls to access privileged system
resources or services. Thus such privileged processes are
often a major target for intruders. To monitor user behav-
ior on systems that accept shell commands from users, shell
command sequences from audit logs can be used for user
pro/ling.

Normal program or user behaviors are pro/led by build-
ing behavioral models using data collected from normal op-
erations. There are generally two categories of behavioral
models. Dynamic models explicitly model temporal vari-
ations that are essential for discriminating abnormal sys-
tem behavior from normal behavior. Static models, on the
other hand, do not explicitly model temporal variations.
They could be used for anomaly detection problems if the
normal system behavior does not exhibit signi/cant tem-
poral variations, or if the temporal sequences are /rst con-
verted into some non-temporal representation typically in
the form of multidimensional feature vectors with no time
dimension.

Intrusion detection systems based on pro/ling system
call sequences and shell command sequences are /rst stud-
ied with the dynamic modeling approach based on hidden
Markovmodels (HMM) and the principle ofmaximum like-
lihood. These systems can be seen as extensions and variants
of previous HMM-based intrusion detection systems. After-
wards, we will propose an information-theoretic static mod-
eling approach based on event occurrence frequency distri-
butions and the principle of minimum cross entropy. The
novelty detection approach is adopted to estimate the model
parameters using normal training data only, as opposed to
the classi/cation approach which has to use both normal and
intrusion data for training. To determine whether or not a
certain behavior is similar enough to the normal model and
hence should be classi/ed as normal, we use a scheme that
can be justi/ed from a hypothesis testing perspective.

Comparative studies of the two modeling approaches on
di1erent intrusion detection problems under di1erent oper-
ating conditions are then performed.

From our experiments, we conclude that the HMM-based
dynamic modeling approach is better suited for the in-
trusion detection problem based on system calls, but the
information-theoretic static modeling approach is a better
choice for that based on shell commands. We also measured
the CPU execution time for di1erent methods. All the tasks
were run on an UltraSPARC 30 workstation with 256MB

memory. Our information-theoretic static modeling method
based on cross entropy is impressive in that its training
time is always negligible because it simply requires the
computation of a distribution based on the training data.
The testing time is also comparable to that for HMMs. Our
method would be particularly attractive if new models have
to be built regularly due to frequent changes in the system
behavior.

We also compared our results with those obtained by
others using instance-based learning (IBL). The two meth-
ods can achieve very similar performance in terms of ac-
curacy. However, there exist major di1erences between the
two methods in terms of computational and storage require-
ments. Apparently IBL has much higher storage requirement
because all training examples have to be explicitly stored.
Also, each unknown test case has to be matched against all
the stored examples and hence the computational overhead
is also very high. Our method is clearly superior in this as-
pect because the training examples are summarized as a dis-
tribution, the storage requirement of which does not depend
on the size of the training set. Similarly, during testing, the
computational requirement is also very low.

Acknowledgements

The research reported in this paper has been supported in
part by the Hong Kong Innovation and Technology Com-
mission (ITC) under project AF=223=98 and the Hong Kong
University Grants Committee (UGC) under Areas of Excel-
lence research grant AoE98=99.EG01.

References

[1] D.E. Denning, An intrusion-detection model, IEEE Trans.
Software Eng. 13 (2) (1987) 222–232.

[2] H. Debar, M. Dacier, A. Wespi, Towards a taxonomy of
intrusion-detection systems, Comput. Networks 31 (8) (1999)
805–922.

[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classi/cation, 2nd
Edition, Wiley, New York, NY, USA, 2001.

[4] S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longsta1, A
sense of self for Unix processes, Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA,
6–8 May, 1996, pp. 120–128.

[5] D. Endler, Intrusion detection: applying machine learning
to Solaris audit data. Proceedings of the Fourteenth Annual
Computer Security Applications Conference, Phoenix, AZ,
USA, 7–11 December, 1998, pp. 268–279.

[6] G.G. Helmer, J.S.K. Wong, V. Honavar, L. Miller,
Intelligent agents for intrusion detection. Proceedings of the
1998 IEEE Information Technology Conference—Information
Environment for the Future, Syracuse, NY, USA, 1–3
September 1998, pp. 121–124.

[7] W. Lee, S.J. Stolfo, Data mining approaches for intrusion
detection, Proceedings of the Seventh USENIX Security
Symposium, San Antonio, TX, USA, 26–29 January 1998,
pp. 79–93.

D.-Y. Yeung, Y. Ding / Pattern Recognition 36 (2003) 229–243 243

[8] C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions
using system calls: alternative data models. Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA,
USA, 9–12 May 1999, pp. 133–145.

[9] J. Ryan, M.J. Lin, R. Miikkulainen, Intrusion detection
with neural networks, in: M.I. Jordan, M.J. Kearns, S.A.
Solla (Eds.), Advances in Neural Information Processing
Systems, Vol. 10, MIT Press, Cambridge, MA, 1998,
pp. 943–949.

[10] D. Gunetti, G. Ru1o, Intrusion detection through behavioral
data. Proceedings of the Third International Symposium on
Intelligent Data Analysis, Amsterdam, Netherlands, 9–11
August 1999, pp. 383–394.

[11] T. Lane, Hidden Markov models for human=computer
interface modeling, Proceedings of the IJCAI-99 Workshop
on Learning about Users, Stockholm, Sweden, 31 July 1999,
pp. 35–44.

[12] T. Lane, C.E. Brodley, Temporal sequence learning and data
reduction for anomaly detection, ACM Trans. Inform. System
Secur. 2 (3) (1999) 295–331.

[13] W. Lee, S.J. Stolfo, K.W. Mok, A data mining framework for
building intrusion detection models, Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 9
–12 May 1999, pp. 120–132.

[14] M. Schonlau, M. Theus, Detecting masquerades in intrusion
detection based on unpopular commands, Inform. Process.
Lett. 76 (1=2) (2000) 33–38.

[15] W.J. Daunicht, Autoassociation and novelty
detection by neuromechanics, Science 253 (5025) (1991)
1289–1291.

[16] C.M. Bishop, Novelty detection and neural network validation,
IEE Proc.: Vision Image Signal Process. 141 (4) (1994)
217–222.

[17] N. Japkowicz, C. Myers, M. Gluck, A novelty detection
approach to classi/cation, Proceedings of the Fourteenth
International Joint Conference on Arti/cial Intelligence,
Vol. 1, MontrWeal, Quebec, Canada, 20–25 August 1995,
pp. 518–523.

[18] T. Lane, C.E. Brodley, Temporal sequence learning and
data reduction for anomaly detection, Proceedings of the
Fifth ACM Conference on Computer and Communications
Security, San Francisco, CA, USA, 2–5 November 1998,
pp. 150–158.

[19] L.R. Rabiner, A tutorial on hidden Markov models and
selected applications in speech recognition, Proc. IEEE
77 (2) (1989) 257–286.

[20] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood
from incomplete data via the EM algorithm (with discussion),
J. Roy. Statist. Soc. Ser. B 39 (1977) 1–38.

[21] L.E. Baum, T. Petrie, G. Soules, N. Weiss, A maximization
technique occurring in the statistical analysis of probabilistic
functions of Markov chains, Annals of Mathematical Statistics
41 (1) (1970) 164–171.

[22] J.E. Shore, R.W. Johnson, Axiomatic derivation of the
principle of maximum entropy and the principle of minimum
cross-entropy, IEEE Transactions on Information Theory
26 (1) (1980) 26–37.

[23] R.W. Johnson, J.E. Shore, Comments on and correction
to ‘axiomatic derivation of the principle of maximum
entropy and the principle of minimum cross-entropy’ (Jan 80
26–37), IEEE Transactions on Information Theory 29 (6)
(1983) 942–943.

[24] S. Kullback, R.A. Leibler, On information and suJciency,
Ann. Math. Statist. 22 (1951) 79–86.

[25] P.R. Cohen, Empirical Methods for Arti/cial Intelligence,
MIT Press, Cambridge, MA, USA, 1995.

About the Author—DIT-YAN YEUNG received his B.Sc.(Eng.) degree in Electrical Engineering and M.Phil. degree in Computer Science
from the University of Hong Kong, and his Ph.D. degree in Computer Science from the University of Southern California in Los Angeles.
From 1989 to 1990, he was an Assistant Professor at the Illinois Institute of Technology in Chicago. He is currently an Associate Professor in
the Department of Computer Science at the Hong Kong University of Science and Technology. He is also the Director of the Sino Software
Research Institute (SSRI). His current research interests are primarily in machine learning and pattern recognition, and their applications in
biometric veri/cation, computer security, handwriting recognition, and Markov decision problems. He frequently serves as a paper reviewer
for a number of international conferences and journals, including Pattern Recognition, Pattern Recognition Letters, IEEE Transactions
on Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, and IEEE Transactions on Neural Networks.

About the Author—YUXIN DING received his B.Eng. degree in Computer Engineering from the Shenyang Institute of Technology, his
Master degree in Computer Science from the Hebei University of Technology, and his Ph.D. degree in Computer Software from the Institute
of Software, Chinese Academy of Sciences. He is currently a Research Associate in the Department of Computer Science at the Hong Kong
University of Science and Technology. His current research interests are in machine learning and computer security.

	Host-based intrusion detection using dynamic and static behavioral models
	Intrusion detection problems
	Classification versus novelty detection
	Dynamic versus static behavioral models
	Dynamic modeling approach based on hidden Markov models and maximum likelihood
	Hidden Markov models
	Sample likelihood with respect to model

	Static modeling approach based on occurrence frequency distributions and minimum cross entropy
	Occurrence frequency distributions
	Cross entropy between distributions

	Data preprocessing and partitioning
	Preprocessing of system call data
	Preprocessing of shell command data
	Partitioning of datasets

	Model construction and performance evaluation
	Performance criteria
	Model training
	Threshold determination
	Model testing
	Hypothesis testing perspective

	Experimental results and discussions
	Experiments for system call data
	Results
	Discussion

	Experiments for shell command data
	Results
	Discussion

	General discussion
	Comparison with previous work

	Conclusion
	Concluding remarks
	Contributions
	Future research

	Summary
	Acknowledgements
	References

